Fractional View Analysis of Kuramoto–Sivashinsky Equations with Non-Singular Kernel Operators
نویسندگان
چکیده
In this article, we investigate the nonlinear model describing various physical and chemical phenomena named Kuramoto–Sivashinsky equation. We implemented natural decomposition method, a novel technique, mixed with Caputo–Fabrizio (CF) Atangana–Baleanu deriavatives in Caputo manner (ABC) fractional derivatives for obtaining approximate analytical solution of equation (FKS). The proposed method gives series form which converges quickly towards exact solution. To show accuracy examine three different cases. presented results by means graphs tables to ensure validity. Further, behavior achieved order is also presented. obtain implementing shows that our technique extremely efficient simple behaviour models found science technology.
منابع مشابه
Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel
*Correspondence: [email protected] 1Department of Mathematical Sciences, UAE University, P.O. Box 15551, Al Ain, UAE Full list of author information is available at the end of the article Abstract In this paper we study linear and nonlinear fractional diffusion equations with the Caputo fractional derivative of non-singular kernel that has been launched recently (Caputo and Fabrizio in Prog....
متن کاملLaplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel
A universal approach by Laplace transform to the variational iteration method for fractional derivatives with the nonsingular kernel is presented; in particular, the Caputo-Fabrizio fractional derivative and the Atangana-Baleanu fractional derivative with the non-singular kernel is considered. The analysis elaborated for both non-singular kernel derivatives is shown the necessity of considering...
متن کاملInterval fractional integrodifferential equations without singular kernel by fixed point in partially ordered sets
This work is devoted to the study of global solution for initial value problem of interval fractional integrodifferential equations involving Caputo-Fabrizio fractional derivative without singular kernel admitting only the existence of a lower solution or an upper solution. Our method is based on fixed point in partially ordered sets. In this study, we guaranty the existence of special kind of ...
متن کاملMultilinear Singular Operators with Fractional Rank
We prove bounds for multilinear operators on R given by multipliers which are singular along a k dimensional subspace. The new case of interest is when the rank k/d is not an integer. Connections with the concept of true complexity from Additive Combinatorics are also investigated.
متن کاملApplication of Tau Approach for Solving Integro-Differential Equations with a Weakly Singular Kernel
In this work, the convection-diffusion integro-differential equation with a weakly singular kernel is discussed. The Legendre spectral tau method is introduced for finding the unknown function. The proposed method is based on expanding the approximate solution as the elements of a shifted Legendre polynomials. We reduce the problem to a set of algebraic equations by using operational matrices....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2022
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym14071463